BINP's Polarization Proposal for Tau-Charm Factory

I.A.Koop, A.V.Bogomyagkov and A.V. Otboev BINP, 630090 Novosibirsk, Russia

HKIAS Mini-Workshop on Polarization in Future Colliders January 17 - 18, 2019 Hong Kong, China

Outline

- BINP's c-tau complex with the longitudinally polarized electrons.
- Multiple Siberian Snakes concept.
- Radiative self-polarization processes. Formulae Derbenev - Kondratenko.
- Option with two 90⁰ spin rotators.
- Results and conclusion.

Novosibirsk c-tau complex layout

The Novosibirsk c-tau factory parameters

Beam Energy	1.0 – 3.0	GeV
Circumference	522	m
Crossing angle	60	mr
Emittances, $\varepsilon_x / \varepsilon_y$	4.8 / 0.025	nm
Number of bunches	270	
Number of particles/bunch	9·10 ¹⁰	
Total current	2.2	A
Beta function, β_x / β_y	50 / 0.5	mm
Sigma, σ _x / σ _y	15/0.1 (3 GeV)	mkm
Luminosity	0.9 - 2.8 · 10 ³⁵	cm ⁻² s ⁻¹

Polarization scheme with 3 snakes (arc=120^o +2 damping wigglers in the arc's middle)

Polarization vector in BINP's c-tau e-ring. 5 snakes option.

I.Koop, Polarization in BINP tau-charm

Transparent spin rotator (or partial snake)

All quads don't need to be skewed! This is the main advantage to place quads between two solenoid-halves.

Another feature: one can switch off solenoids keeping same transformation matrices by re-tuning these 7 quads – make equivalents in optics!

I.Koop, Polarization in BINP tau-charm

Equivalents of 180⁰ spin rotator, drifts 1, 2, 3

Floquet functions of snakes №1, №2 and №3, solenoids off

I.Koop, Polarization in BINP tau-charm

Depolarization time in presence of snakes

$$\tau_{\rm p}^{-1} = \frac{5\sqrt{3}}{8} \lambda_{\rm e} r_{\rm e} c \gamma^5 \left\langle \left| \mathbf{K}^3 \right| \left(1 - \frac{2}{9} (\vec{n} \vec{v})^2 + \frac{11}{18} \vec{d}^2 \right) \right\rangle$$

 $K = \rho^{-1}$, $\left| \vec{v} \right| = 1$ Derbenev, Kondratenko, in 70-th

$$\vec{d} = \gamma \frac{d\vec{n}}{d\gamma}$$
 is
the spin – orbit
coupling vector

Spin transparency cancels the betatron contribution to d: $\vec{d} = \vec{d}_{\gamma} + \breve{A}_{\beta}$, then:

$$\vec{d}^2(0) = \frac{\pi^2}{4} \sin^2 \frac{\pi \nu}{n_{snk}}$$
$$\left\langle \vec{d}^2 \right\rangle = \vec{d}^2(0) + \frac{\pi^2}{3} \frac{\nu^2}{n_{snk}^2}$$

Placing damping wigglers in minimum of |d| weakens depolarizing effects of SR

Self-polarization degree in presence of snakes and wigglers

$$\varsigma_{\rm p} = \frac{8}{5\sqrt{3}} \cdot \frac{(\pi/2)\sin(\pi v/n_{\rm snk}) \left\langle K_{\rm B}^3 + K_{\rm W}^{-3} \right\rangle}{\left\langle K_{\rm B}^3 + \left| K_{\rm W} \right|^3 \right\rangle 7/9 + \left[\left\langle K_{\rm B}^3 d^2(\theta) \right\rangle + \left| K_{\rm W} \right|^3 d^2(0) \right] 11/18}$$

 $K_{W} \equiv \rho_{W}^{-1}$

Symmetric wigglers do not contribute to the nominator, but asymmetric will do. That can be used to polarize the positron beam.

Module of Spin-Orbital Function, 1 Snake

Here the Spin-Orbit coupling function $d=|\gamma d\vec{n}/d\gamma|$ was calculated by the code ASPIRRIN, written in 90-th by V. Ptitsyn and updated later on by S.R. Mane.

Module of Spin-Orbital Function, 3 Snakes

Module of Spin-Orbital Function, 5 Snakes

Arc's angles between snakes are chosen not optimal for 5 snakes. Therefore maximums of d-function are much higher than what was expected for their uniform distribution.

Radiative polarization relaxation time, τ_{rad}

Radiative equilibrium polarization, P_{rad}, 1 snake

I.Koop, Polarization in BINP tau-charm

Radiative equilibrium polarization, P_{rad}, 3 snakes

3 snakes

I.Koop, Polarization in BINP tau-charm

Polarization degree overview, if τ_{beam} =300 s

Polarization degree overview, if τ_{beam}=100 s

Alternative option with two 90⁰- spin rotators.

I.Koop, Polarization in BINP tau-charm

Version with two 90⁰-rotators. Spin components at IP.

Two 90⁰-rotators are placed at $\theta = \pm 0.303$ from IP - optimal for polarization at $\Lambda c = 2.285$ GeV. Polarization at IP is longitudinal also at "magic" energies E=0.44 (GeV)·n· $\pi/(\pi-\theta)$, n=1, ...,6. Then the spin tune is integer at long arc between rotators. So, they do act as a Siberian Snake!

Tau-tau production cross-section.

At threshold $\sigma_{\tau\tau} \approx 0.4 \text{ nb}$

Depolarization time in option with two 90⁰-rotators.

Rotators are placed at θ = ± 0.303 - optimal azimuth value for E=2.2865 GeV (Ac mass!).

Conclusion

- 1 snake provides up to 80% 90% of the longitudinal polarization at E < 1.5 GeV. This option can be considered as a first stage for polarization program.
- 3 snakes provide sufficiently high polarization degree, about 75-90% in the energy range E < 2.5 GeV and only about 50% at 3 GeV. Currently this is the main scenario because it fulfils to the main physics program requirements.
- 5 snakes option requires different optimization of a ring layout to place snakes uniformly in terms of the velocity circulation angle. Now not under consideration.
- Option with two 90⁰ spin rotators is not as universal as multiple snakes version, but its price is much lower. We shall make final choice after discussions with the detector community.